Tohru Takayasu and M akoto Nitta*
D epartment of Chemistry, School of Science and Engineering, W aseda U niversity, Sinjuku-ku, Tokyo 169, J apan

Abstract

Reaction of prop-2-enylidenetriphenylphosphorane derivatives with several tropones has been studied in an attempt to provide a short new route to the azulene ring system. (2-E thoxyprop-2enylidene)triphenylphosphorane 4 reacts with 2-chloro-, 2-methoxy- and 2,3,5,7-tetrachlorotropones $7 \mathrm{a}-\mathrm{c}$ to give azulene derivatives 8 and 9 in moderate yields. On the other hand, reaction of [2-ethoxy-3-(ethoxycarbonyl)prop-2-enylideneltriphenylphosphorane 6 with tropones 7a,c results in the formation of azulene esters 10 and 11 in low yields, whilst that with tropone 7 b gives no azulene and substrate 7 b is recovered. In order to gain insight into the mechanistic pathways, reaction of phosphoranes 4 and 6 with deuteriated tropones 14a,b which are the corresponding trideuteriated derivatives of compounds $7 \mathrm{a}, \mathrm{b}$, have also been studied. F urthermore, compound 4 reacts also with 5-(dimethylaminomethylene)cyclopenta-1,3dienecarbaldehyde 33 to give 6-ethoxyazulene 37 in moderate yield.

Introduction

Previously, we have demonstrated a simple preparation of (vinylimino)phosphoranes 1, which have two nucleophilic centres at the α - and β-positions. ${ }^{1}$ (V inylimino)phosphoranes are found to react with compounds bearing two electrophilic centres or M ichael acceptors [e.g. α-bromo ketones, ${ }^{2} \alpha, \beta$-unsaturated ketones or aldehydes, ${ }^{3}$ tropone derivatives, ${ }^{4}$ methano[11]annulenones ${ }^{5}$ and 5 -(dimethylaminomethylene)cyclopenta-1,3-dienecarbaldehyde ${ }^{6,7}$] in an enamine alkylation process followed by an aza-W ittig reaction. This provides efficient routes to pyrroles, pyridines, 1 -azaazulenes, methanocycloundeca[b]pyrrole and 5 -azaazulenes. On the other hand, it was shown that prop-2-enylidenephosphoranes 2 also have two nucleophilic centres, at the α - and γ-positions. Although there are several reports demonstrating substitution at both the α - and γ position, ${ }^{8}$ aldehydes and ketones usually react at the α-position in a normal Wittig reaction. ${ }^{9}$ A cylation occurs predominantly at the γ-position, ${ }^{10}$ whilst the regioselectivity of the alkylation is uncertain because of a paucity of examples. ${ }^{11}$ It was shown that prop-2-enylidenephosphoranes react with compounds containing two electrophilic centres, (e.g. α, β-unsaturated aldehydes, ketones ${ }^{12,13}$ and α-halogeno ketones ${ }^{14}$) to give cyclohexadienes and cyclopentadienes, respectively, bearing a variety of substituents. However, the synthetic utility of the prop-2-enylidenephosphoranes in various annulation reactions is still unexplored. In this context, we planned to take advantage of the above methodology for the preparation of the azulene ring system by using the reaction of (2-ethoxyprop-2-enylidene)triphenylphosphorane $4{ }^{15}$ which is prepared in situ by base treatment of phosphonium salt $\mathbf{3},{ }^{16}$ and the isolated analogue [2-ethoxy-3-(ethoxycarbonyl)prop-2-enylidene]triphenylphosphorane 6^{14} (see Scheme 1) with 2-chloro-, 2-methoxy- and 2,3,5,7-tetrachloro-tropones 7a-c and 5-(dimethylamino-methylene)cyclopenta-1,3-dienecarbaldehyde 33. In order to gain insight into the reaction pathways, 2 -chloro-3,5,7-trideuteriotropone 14a ${ }^{17}$ and 3,5,7-trideuterio-2-methoxytropone $14 \mathbf{b}^{18}$ were also studied. We describe here our results in detail.

Results and discussion

Reaction of prop-2-enylidenephosphoranes 4 and 6 with tropones 7a-c was carried out to give azulene derivatives (Scheme 2). The reaction conditions and the yields of the products are

1

Br^{-}

3

5

2

4

6
Scheme 1
summarized in Table 1. The reaction is considered to proceed via a M ichael addition from the γ-position of phosphoranes 4 and 6 onto the tropone nucleus as in the case of the reaction of compounds 1 with tropones. ${ }^{4}$ The reaction of phosphorane 4 with tropones 7 a and $\mathbf{7 b}$ proceeded under mild conditions to give 2 -ethoxyazulene 8^{19} in moderate yield (entries 1-3). The reaction of phosphorane 4 with tetrachlorotropone $\mathbf{7 c}$, which has four electron-withdrawing chlorine atoms, did not proceed at room temperature, but was successful at $70^{\circ} \mathrm{C}$ to give 4,5,7-trichloro-2-ethoxyazulene 9 in modest yield (entry 4). On the other hand, reaction of ester phosphorane 6 , which has an additional electron-withdrawing $\mathrm{CO}_{2} \mathrm{Et}$ group on the parent structure 4, did not react with the tropone 7a at room temperature, and tropone 7 a was recovered. H owever, compound 6 reacted with the tropone 7a to give 2-ethoxy-1-ethoxycarbonylazulene 10^{20} under forcing conditions (entry 5). Similarly, the reaction of compound 6 with the tropone 7 c afforded azulene derivative $\mathbf{1 3}$ in low yield (entry 7). Compound 6 did not react with tropone $\mathbf{7 b}$, and the starting material $\mathbf{7 b}$ was recovered (entry 6). It is clear that the phosphorane 4, which has an electron-donating substituent, reacts smoothly under mild conditions to result in moderate yields of the products. The phos-

Table 1 Reaction of phosphoranes $\mathbf{4}$ and/or $\mathbf{6}$ with tropones $\mathbf{7 a - c}, \mathbf{1 4 a}, \mathrm{b}$ and carbaldehyde 33

Entry	Phosphorane	Tropone	Reaction conditions			Product	Y ield (\%)
			Solvent	T/ ${ }^{\circ} \mathrm{C}$	t/h		
1	$4^{\text {a }}$	7a	D M SO	r.t. ${ }^{\text {c }}$	12	8	60
2	$4{ }^{\text {a }}$	7b	DM SO	r.t.	12	8	55
3	$4{ }^{\text {b }}$	7b	DMF	r.t.	10	8	55
4	$4{ }^{\text {b }}$	7 c	DMF	70	1	9	21
5	6	7 a	DM SO	140	12	10	27
6	6	7 b	DMF	145	12	none	
7	6	7c	DMF	90	12	11	4
8	$4{ }^{\text {b }}$	14a	DM SO	r.t.	2	24	50
9	$4{ }^{\text {b }}$	14b	DM SO	r.t.	2	24/28 ${ }^{\text {d }}$	54
10	6	14a	D M SO	120	12	29/30 ${ }^{\text {e }}$	27
11	$4{ }^{\text {b }}$	33	DMF	95	12	37	66

${ }^{\text {a }} \mathrm{Bu}{ }^{t} \mathrm{OK}$ was used to generate phosphorane $4 .{ }^{\mathrm{b}} \mathrm{K} \mathrm{N}\left(\mathrm{SiM} \mathrm{e}_{3}\right)_{2}$ was used to generate phosphorane $4 .{ }^{\mathrm{c}}$ Room temp. ${ }^{\text {d } \mathrm{A}}$ mixture of products $\mathbf{2 4}$ and $\mathbf{2 8}$ in the ratio $1: 3 .{ }^{e}$ A mixture of products 29 and 30 in the ratio 1:6.

10

7c \qquad
6

11

Scheme 2

phorane 6, which has an additional CO_{2} Et group, is considered to be less reactive 2-Chlorotropone 7a seems to be more effective than 2-methoxytropone 7b for the preparation of the azulene ring system (cf. entries 5 and 6).

The structures of known compounds 8 and 10 were unequivocally assigned on the basis of a comparison of their physical data with those reported in the literature ${ }^{19,20} \mathrm{The}^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra clearly suggest that compound 9 does not have a symmetrical structure; the proton signal at $\delta 8.03$ is typical for azulene and is assigned to $8-\mathrm{H}$. The structure of compound 9 was deduced from this. The spectral data of compounds 10 and 11 can be considered consistent with their structures. The proton signals of $8-\mathrm{H}$ of compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ appear at $\delta 9.37$ and 9.50 , respectively, suggesting that each $8-\mathrm{H}$ proton of compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ is located very close to the $\mathrm{CO}_{2} \mathrm{Et}$ group: thus the structure 11 was deduced. The results suggest that the M ichael addition of phosphoranes 4 and 6 onto the tropone $\mathbf{7 c}$ takes place mainly at $\mathbf{C - 7}$ of tropone $\mathbf{7 c}$ (vide infra).

N ucleophilic substitution onto 2-chlorotropone 7a is known
to take place at C-7 (abnormal substitution), while that onto 2methoxytropone7b occurs at C-2 (normal substitution) to give2substituted tropones. ${ }^{21}$ It was shown that methylenetriphenylphosphorane 12 does not undergo Wittig reaction with tropone 7a but it does react with this tropone to give oxaphosphole derivative 13 , the structure of which was assigned by X -ray crystallographic analysis. ${ }^{22}$ Since mechanistic aspects of the reaction are unclear, ${ }^{18}$ the pathways for the formation of compound 13 are confirmed here by labelling the troponoid ring with deuterium (Scheme 3). Thus, the attempted reaction of phosphorane 12 with compound 14a afforded compound 17 . The structural assignment of 17 was based on high-resolution mass spectral data as well as on a comparison of the ${ }^{1} \mathrm{H}$ NM R spectral data with those of the parent compound 13. Thus it is clear that compound 12 attacks at C-7 of tropone 14a to give intermediate 15, which undergoes proton migration, regenerating a phosphorane compound, 16. The elimination of DCI , followed by cyclization, gives bicycle 17. On the other hand, methylenephosphorane $\mathbf{1 2}$ attacks at C-2 in the reaction with 2 -methoxytropone 14b to give the intermediate 18, which undergoes proton transfer to regenerate a phosphorane, compound 19. The elimination of HOM e in compound 19 occurs readily, and the subsequent cyclization gives the oxaphosphole 20 . The structure 20 was assigned unequivocally on the basis of highresolution mass and ${ }^{1} \mathrm{H}$ NMR data. The formation of oxaphospholes 17 and 20 suggests that reaction of phosphorane $\mathbf{1 2}$ with tropones 14a and 14b proceeds in a different way to give the products, and the results are in good accord with the reactivity observed in usual nucleophilic substitutions of tropones 7a,b. ${ }^{21}$

On the other hand, the reaction of the phosphorane 4 with tropone 14a gave compound $\mathbf{2 4}$ (Scheme 4, Table 1). The ${ }^{1} \mathrm{H}$ NM R spectrum unequivocally showed, besides an ethyl group, three signals. These signals are assigned to the $\mathrm{C}-1 / 3, \mathrm{C}-4 / 8$ and C-6 protons, respectively. This fact suggests that initial γ alkylation of compound 4 onto tropone 14a (7a) occurred at C-7 to give the intermediate 21, which regenerates a phosphorane 22 as suggested also in Scheme 3. The subsequent Wittig reaction leading to the azulene derivative $\mathbf{2 3}$ followed by elimination of DCI results in the formation of final product 24 (8). The regioselectivity observed in $\mathbf{1 4 a} \mathbf{(7 a)}$ is similar to that observed for methylenephosphorane 12 in Scheme 3. In the reaction of the phosphorane 4 with methoxytropone 14b, the dideuterioazulene $\mathbf{2 4}$ and trideuterioazulene $\mathbf{2 8}$ were obtained in the ratio 1:3 (Scheme5, Table 1). The compound $\mathbf{2 4}$ is clearly derived from γ-alkylation of compound $\mathbf{4}$ at $\mathrm{C}-7$ of tropone 14b (cf. Scheme 4). An alternative pathway is observed here The phosphorane 4 attacks at C-2 of tropone 14b to give the intermediate 25, which regenerates a phosphorane, 26. The intermediate $\mathbf{2 6}$ undergoes an intramolecular Wittig reaction to give the dihydroazulene 27, which eliminates H OM e readily to give the azulene 28. U nexpectedly, alkylation by compound $\mathbf{4}$ occurs

on tropone 14b (7b) at both C-7 and C-2, with preference for C-2 attack. In the reaction of phosphorane 6 with tropone 14a, the dideuterioazulene 29 and the trideuterioazulene $\mathbf{3 0}$ were obtained in the ratio 1:6 (Scheme 6, Table 1). It is clear that alkylation of compound 6 occurs at C-7 as well as C-2, with preferencefor $\mathrm{C}-2$, as in the case of the reaction of phosphorane 4 with tropone 14b.
In the reaction of phosphoranes 4 and 6 with tropone $\mathbf{7 c}$, alkylation on $\mathbf{7 c}$ ocurs at $\mathrm{C}-7$, leading to intermediate 31 , and finally to formation of the products 9 and 11 . No C-2 attack is observed here, and this is probably due to the large steric hindrance preventing formation of intermediate 32: the presence of the adjacent chlorine substituents at C-2 and C-3 probably prevents C-2 attack of phosphoranes $\mathbf{4}$ and $\mathbf{6}$ onto the tropone nucleus 7c. A s observed above the regioselectivity of the nucleophilic γ-attack of compounds 4 and 6 onto tropone 14a (7a) and $\mathbf{1 4 b}$ ($\mathbf{7 b}$) does not follow the pathway observed in the reactions of compound $\mathbf{1 2}$ with $\mathbf{1 4 a}(\mathbf{7 a})$ and $\mathbf{1 4 b}$ or that of nucleophiles with compounds 7a,b. ${ }^{21}$ F urthermore, α-attack (carbon atom bearing the PPh_{3} group) of phosphoranes 4 and 6 leading to the intermediates, such as that in the reactions of phosphorane $\mathbf{1 2}$ with tropones $\mathbf{1 4 a , b}$, may occur in the present reactions. However, we could not isolate any product expected from α-attack of substrates $\mathbf{4}$ and $\mathbf{6}$. One may consider that such an attack on the tropone nucleus would reduce the yield of the products. This point is unclear at this stage.

Regarding carbaldehyde 33, it reacts with both nucleophilic

and electrophilic reagents, indicating a participation of the polar structure 33B. ${ }^{23}$ Previously, we have prepared 5 -azaazulene derivatives by the reaction of (vinylimino)phosphoranes 1 with aldehyde $33 .{ }^{7}$ The results prompted us to investigate the reaction of phosphoranes 4 with aldehyde 33. As expected, compound 4 reacted with aldehyde 33 to give 6 -ethoxyazulene 3^{24} (Scheme 7). The physical data of compound 37 are consistent with its assigned structure ${ }^{24}$ Similar to the reaction of aldehyde 33 with (vinylimino)phosphoranes 1 , we propose the reaction pathways outlined in Scheme 7. M ichael addition of substrate 4 occurs at the C-6 position of aldehyde 33 to give the intermediate 34 . The following proton transfer and ketonization of intermediate 34 regenerates a phosphorane 35, which then undergoes an intramolecular Wittig reaction to give bicycle 36 , which eliminates $\mathrm{HN} \mathrm{M} \mathrm{e}_{2}$ to afford the azulene 37 in moderate yield (Table 1, entry 11).

In conclusion, the utility of substituted prop-2-enylidenephosphoranes $\mathbf{4}$ and $\mathbf{6}$ for the preparation of the azulene ring system having substituents on either the five-membered ring or

Scheme 6
the seven-membered ring has been demonstrated. Phosphorane 4 is more efficient than its analogue 6 , but the parent prop-2enylidenetriphenylphosphorane does not react with carbonyl compounds 7a or 33 to give any product except for tarry materials (see Experimental section). Detailed reasons for this are not given here Further applications of prop-2-enylidenephosphoranes and related compounds toward the preparation of theoretically interesting compounds are now in progress in our laboratory.

Experimental

IR Spectra were recorded on a Shimadzu IR -400 spectrometer. M ass spectra and high-resolution mass spectra were run on a JEOL Automass 150 and a DX-300 spectrometer. Unless otherwise specified, ${ }^{1} \mathrm{H}$ NM R spectra at 90,270 and 400 M Hz were recorded on a H itachi R-90, a JEOL EX-270 and a JN M -GSX-400 spectrometer, and ${ }^{13} \mathrm{C}$ N M R spectra at 100.6 M Hz were recorded on a JNM-GSX-400 spectrometer. All spectra were recorded in CDCl_{3}, and the chemical shifts are given relative to internal SiM_{4} standard. J Values are given in Hz . M ps were recorded on a Yamato M P-21 apparatus and are uncorrected. All reactions were carried out under anhydrous conditions and dry nitrogen. Samples were dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ in vacuo.

Preparation of phosphonium bromide 3

To stirred aq. acetonyltriphenylphosphonium chloride (8.85 g , 25 mmol in 30 ml$)$ was added aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.00 \mathrm{~g}, 19 \mathrm{mmol}$ in 20 ml) over a period of 20 min at $0^{\circ} \mathrm{C}$. The resulting precipitates were collected by filtration, washed with water and dried in vacuo at $60^{\circ} \mathrm{C}$ to give acetonylidenetriphenylphosphorane (6.64 $\mathrm{g}, 89 \%)$. The dried crystals were then dissolved in $\mathrm{EtBr}(100 \mathrm{ml})$ at room temperature, and the mixture was stirred at room temperature for 24 h . The precipitate was collected by filtration and dried in vacuo at $60^{\circ} \mathrm{C}$ to give title compound 3 (3.98 g ,

46\%) as crystals, mp $161-162^{\circ} \mathrm{C}$ (decomp.) (from MeCN AcOEt) [lit., ${ }^{16} 173{ }^{\circ} \mathrm{C}$ (decomp.)]; $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 0.71(3 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 7.0), 2.61 (3 H, s), 4.05 ($2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0$), 5.75 ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 19.9$) and 7.52-7.88 $(15 \mathrm{H}, \mathrm{m})$.

Preparation of phosphorane 6

To stirred aq. (2-ethoxy-3-ethoxycarbonylprop-2-enyl)triphenylphosphonium bromide 5 ($8.99 \mathrm{~g}, 18 \mathrm{mmol}$ in 200 ml) was added dropwise aq. NaOH ($790 \mathrm{mg}, 20 \mathrm{mmol}$ in 50 mol) over a period of 1 h at $0^{\circ} \mathrm{C}$. Then the resulting precipitate was collected by filtration, washed with water and dried in vacuo at $60^{\circ} \mathrm{C}$ to give compound $6(7.17 \mathrm{~g}, 95 \%)$ as a yellow powder, mp $162-164{ }^{\circ} \mathrm{C}$ (from M eCN-AcOEt) (lit. ${ }^{14} 164-167{ }^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}(90$ M Hz) $0.58(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0), 1.31(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0), 3.69(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0)$, 4.12 (2 H, q, J 7.0), 4.41 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.7$), 4.86 (1 H, br d, J 15.4) and 7.27-7.77 ($15 \mathrm{H}, \mathrm{m}$).

G eneral procedure for the reaction of phosphorane 4 with tropones 7a-c

To a stirred solution of $\mathrm{K} \mathrm{N}\left(\mathrm{SiM} \mathrm{e}_{3}\right)_{2}(2 \mathrm{ml}$ of a 0.5 m solution in toluene, 1 mmol) or $\mathrm{Bu}^{\text {t }} \mathrm{OK}$ ($112 \mathrm{mg}, 1 \mathrm{mmol}$) was added a solution of phosphonium bromide 3 ($427 \mathrm{mg}, 1 \mathrm{mmol}$) in anhydrous dimethylformamide (DMF) (1 ml) or in dimethyl sulfoxide (DM SO) (1 ml), and the mixture was stirred at room temperature for 30 min . To this was added solution of a tropone 7a-c (0.5 mmol) in DM F (1 ml) or DM SO (1 ml) at room temperature, and the mixture was stirred at room temperature or with heating for periods indicated in Table 1. A fter the reaction was complete, the solvent was removed in vacuo, and the residue was separated by TLC on alumina [hexaneA COEt (10:1)] to give azulenes 8 and 9 . The reaction conditions and the yields of the products are summarized in Table 1.
For compound 8: violet prisms, mp 76-77 ${ }^{\circ} \mathrm{C}$ (from EtOH) (lit., $\left.{ }^{19} 76-77^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 1.41(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0), 4.20(2 \mathrm{H}, \mathrm{q}, \mathrm{J}$ 7.0), $6.73(2 \mathrm{H}, \mathrm{s}), 7.21-7.45(3 \mathrm{H}, \mathrm{m})$ and $7.97(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.9)$.

For 4,5,7-trichloro-2-ethoxyazulene 9: light violet needles, mp 133-135 ${ }^{\circ} \mathrm{C}$ (from EtOH); $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 1.52(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.35$, $\left.\mathrm{CH}_{3}\right), 4.33\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.3, \mathrm{CH}_{2}\right), 6.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0,1$ - or $3-\mathrm{H}$), $7.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0,3$ or $1-\mathrm{H}), 7.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0,6-\mathrm{H})$ and 8.03 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0,8-\mathrm{H}$); $\delta_{\mathrm{c}}(100.6 \mathrm{M} \mathrm{Hz}) 14.7,66.8,102.5,107.6$, 128.1, 128.2, 129.9, 130.2, 133.9, 134.1, 137.9 and 170.9;
$v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2976,2915,1515,1439,1389,1364,1317$, 1288, 1171, 1129, 1111, 1021, 935, 925, 873 and 847 ; m/z (rel. int.) 278,276 and $274\left(\mathrm{M}^{+}, 13,49\right.$ and $\left.50 \%\right)$ and 246 (100) (Found: $\mathrm{M}^{+}, 273.9709 ; \mathrm{C}, 52.4 ; \mathrm{H}, 2.9 . \mathrm{C}_{12} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}$ requires M , 273.9719; C, 52.31; H, 3.29\%).

G eneral procedure for the reaction of phosphorane 6 with tropones 7a-c

To a stirred solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(83 \mathrm{mg}, 0.6 \mathrm{mmol})$ and phosphorane 6 ($418 \mathrm{mg}, 1 \mathrm{mmol}$) in anhydrous solvent (1 ml) was added a solution of tropone $7 \mathrm{a}-\mathrm{c}(0.5 \mathrm{mmol})$ at room temperature, and the mixture was heated for periods indicated in Table 1. A fter the reaction was complete, the solvent was removed in vacuo and the residue was chromatographed on alumina [hexane-A COEt ($5: 1$)]. The fractions were collected and concentrated, and the residue was further purified by TLC on alumina [hexane-A COEt (5:1)] to give azulenes $\mathbf{1 0}$ and $\mathbf{1 1}$. The reaction conditions and the yields of the products are summarized in Table 1.

For compound 10: pink needles, $\mathrm{mp} 80-81^{\circ} \mathrm{C}$ (from EtOH) (lit., ${ }^{20} 84-85^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 1.44(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{Me}$), $1.55(3 \mathrm{H}$, t, J $7.0, \mathrm{Me}$), $4.33\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0, \mathrm{CH}_{2}\right), 4.36\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0, \mathrm{CH}_{2}\right)$, $6.73(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.30-7.61(3 \mathrm{H}, \mathrm{m}, 5-$, $6-$ and $7-\mathrm{H}), 8.13(1 \mathrm{H}$, d, J 7.0, 4-H and $9.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.2,8-\mathrm{H})$.
For compound 11: mp $134-136^{\circ} \mathrm{C}$ (decomp.) (from EtOH); $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 1.26-1.59\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \times 2\right)$, 4.19-4.56 ($4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \times 2\right), 7.13(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.5,6-\mathrm{H})$ and $9.50(1$ H, d, J 1.5, 8-H); $\delta_{\mathrm{c}}(100.6 \mathrm{M} \mathrm{Hz}) 14.2,14.4,59.7,65.7$, 93.4, $95.2,109.2,120.9,126.5,131.6,132.3,132.4,164.9$ and 172.1; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1724$ and 1686; m/z (rel. int.) 348 and 346 $\left(\mathrm{M}^{+}, 29\right.$ and 33%) and 139 (100) (Found: M^{+}, 345.9907. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{O}_{3}$ requires $\mathrm{M}, 345.9932$).

G eneral procedure for the reaction of methylenephosphorane 12 with tropone 7 a and deuteriotropones $14 \mathrm{a}, \mathrm{b}$

To a stirred solution of phosphorane $\mathbf{1 2}$, which was prepared by the reaction of $\mathrm{CH}_{3} \mathrm{PPh}_{3} \mathrm{Br}(357 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathrm{K} \mathrm{N}\left(\mathrm{SiM} \mathrm{e}_{3}\right)_{2}$ (2 ml of a 0.5 m solution in toluene, 1 mmol) in DM SO (1 ml), was added a tropone $7 \mathrm{a}(0.5 \mathrm{mmol})$ or $\mathbf{1 4 a} \mathbf{a} \mathbf{b}(0.5 \mathrm{mmol})$, and the mixture was stirred at room temperature for 1 h . After evaporation of the mixture in vacuo, the resulting residue was chromatographed on alumina. The fractions eluted with hexane-A COEt (5:1) were collected and concentrated, and the residual solids were crystallized from benzene-hexane ($1: 1$) to give products $\mathbf{1 3},{ }^{18} 17$ and $\mathbf{2 0}$, respectively, in quantitative yields.
For compound 13: mp 87-88 ${ }^{\circ} \mathrm{C}$ [from PhH-hexane (1:1)]; $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 4.29(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 37.8,3-\mathrm{H}), 6.17(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{and}$ $6-\mathrm{H}), 6.70(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{and} 7-\mathrm{H}), 7.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.9,8-\mathrm{H})$ and 7.36-7.70 ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (rel. int.) $380\left(\mathrm{M}^{+}, 77 \%\right.$), 277 (19), 262 (100) and 183 (93).

For compound 17: $\delta_{\mathrm{H}}(270 \mathrm{M} \mathrm{Hz}) 4.30(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 36.0,3-\mathrm{H}$), $6.15(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{and} 6-\mathrm{H}), 7.04(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 8-\mathrm{H})$ and $7.36-$ 7.59 ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (rel. int.) 382 ($\mathrm{M}^{+}, 5 \%$), 277 (28), 262 (83) and 183 (100) (Found: $\mathrm{M}^{+}, 382.1497 . \mathrm{C}_{26} \mathrm{H}_{19} \mathrm{D} \mathrm{D}_{2} \mathrm{OP}$ requires M , 382.1457).

For compound 20: $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 4.28(1 \mathrm{H}, \mathrm{br}$ d, J $37.8,3-\mathrm{H}$), $6.70(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 5-\mathrm{and} 7-\mathrm{H})$ and 7.36-7.70 ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z (rel. int.) 383 (M ${ }^{+}, 61 \%$), 277 (100), 262 (67), 184 (61) and 181 (29) (Found: $M^{+}, 383.1508 . \mathrm{C}_{26} \mathrm{H}_{18} \mathrm{D}_{3} \mathrm{OP}$ requires $\mathrm{M}, 383.1519$).

Reaction of phosphorane 4 with deuteriotropones 14a,b

A solution of phosphonium bromide $3(427 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathrm{KN}\left(\mathrm{SiM}_{3}\right)_{2}(2 \mathrm{ml}$ of a 0.5 m solution in toluene, 1 mmol$)$ in DM SO (1 ml) was stirred at room temperature for 10 min . To this solution was added a tropone 14 a ($73 \mathrm{mg}, 0.5 \mathrm{mmol}$) or 14b ($70 \mathrm{mg}, 0.5 \mathrm{mmol}$) and the mixture was stirred at room temperature for 2 h . The reaction mixture was then poured into water, extracted with diethyl ether and the extract was dried over $\mathrm{M} \mathrm{gSO}_{4}$. A fter the diethyl ether had been evaporated off in vacuo, the resulting residue was purified by TLC on alumina
[hexane-A COEt (5:1)] to give dideuterioazulene $\mathbf{2 4}$ or a mixture of $\mathbf{2 4}$ and trideuterioazulene 28 in the ratio $\sim 1: 3$, which was deduced from the following ${ }^{1} \mathrm{H}$ NMR spectral data. The results are also summarized in Table 1.

For compound 24: $\delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.51\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2, \mathrm{CH}_{3}\right)$, $4.31\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.2, \mathrm{CH}_{2}\right), 6.82(2 \mathrm{H}, \mathrm{s}, 1-$ and $3-\mathrm{H}), 7.39(1 \mathrm{H}, \mathrm{s}$, $6-\mathrm{H})$ and $8.08(2 \mathrm{H}, \mathrm{s}, 4$ - and $8-\mathrm{H})$; m/z (rel. int.) $174\left(\mathrm{M}^{+}, 33 \%\right)$ and 146 (100).

For a mixture of $\mathbf{2 4}$ and $\mathbf{2 8 :} \delta_{\mathrm{H}}(270 \mathrm{M} \mathrm{Hz}) 1.44(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2$, $\left.\mathrm{CH}_{3}\right), 4.23\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.2, \mathrm{CH}_{2}\right), 6.82(2 \mathrm{H}, \mathrm{s}, 1$ - and $3-\mathrm{H}), 7.25-$ $7.40(1.8 \mathrm{H}, \mathrm{m}, 5-, 6-$ and $7-\mathrm{H})$ and $8.08(0.5 \mathrm{H}, \mathrm{br}$ s, 4 - and $8-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (rel. int.) $175\left(\mathrm{M}^{+}, 38 \%\right), 174\left(\mathrm{M}^{+}, 41\right)$ and 117 (100).

Reaction of phosphorane 6 with deuteriotropone 14a

A solution of phosphorane 6 ($418 \mathrm{mg}, 1 \mathrm{mmol}$) and tropone 14a ($73 \mathrm{mg}, 0.5 \mathrm{mmol}$) in DM SO (1 ml) was heated at $120^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was then poured into water, extracted with diethyl ether, and the extract was dried over $\mathrm{M} \mathrm{gSO}_{4}$. A fter the solvent had been removed in vacuo, the residue was separated by TLC on alumina [hexane-A COEt (5:1)] to give a mixture of dideuterioazulene 29 and trideuterioazulene 30 in the ratio $\sim 1: 6$, which was determined by the following ${ }^{1} \mathrm{H}$ NMR spectral data. The results are summarized in Table 1.

For a mixture of 29 and $\mathbf{3 0}: \delta_{\mathrm{H}}(270 \mathrm{M} \mathrm{Hz}) 1.44(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0$, $\left.\mathrm{CH}_{3}\right), 1.55\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{CH}_{3}\right), 4.33\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0, \mathrm{CH}_{2}\right), 4.36(2$ $\left.\mathrm{H}, \mathrm{q}, \mathrm{J} 7.0, \mathrm{CH}_{2}\right), 6.73(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.38(0.86 \mathrm{H}, \mathrm{br}$ s, 5 - or $7-$ H), $7.50(0.86 \mathrm{H}$, br s, $7-$ or $5-\mathrm{H}), 7.55(0.14 \mathrm{H}, \mathrm{br}$ s, $6-\mathrm{H}), 8.13$ (0.14 H, br s, $4-\mathrm{H}$) and $9.37(0.22 \mathrm{H}, \mathrm{br} \mathrm{s}, 8-\mathrm{H})$; m/z (rel. int.) 247 ($\mathrm{M}^{+}, 100 \%$) and $246\left(\mathrm{M}^{+}, 26\right)$.

Reaction of phosphorane 4 with compound 33

To a stirred solution of $\mathrm{K} \mathrm{N}\left(\mathrm{SiM} \mathrm{e}_{3}\right)_{2}(2 \mathrm{ml}$ of a 0.5 m solution in toluene, 1 mmol) was added a solution of phosphonium salt 3 ($427 \mathrm{mg}, 1 \mathrm{mmol}$) in DM F (1 ml). To this mixture was added a solution of aldehyde 33 ($75 \mathrm{mg}, 0.5 \mathrm{mmol}$) in DM F (2 ml), and the mixture was heated at $95^{\circ} \mathrm{C}$ for 12 h . A fter the reaction was complete the solvent was removed in vacuo, and the residue was purified by TLC on alumina [hexane-AcOEt ($5: 1$)] to give 6 -ethoxyazulene 37 , as purple needles, $\mathrm{mp} 79-81^{\circ} \mathrm{C}$ (from EtOH) (lit., ${ }^{24} 80-81^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 1.44(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0), 4.10(2$ $\mathrm{H}, \mathrm{q}, \mathrm{J} 7.0), 6.75(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0,5-$ and $7-\mathrm{H}), 7.26(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.7$, 1- and $3-\mathrm{H}), 7.60(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 3.7,2-\mathrm{H})$ and $8.16(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0$, 4- and $8-\mathrm{H}$); m/z (rel. int.) $172\left(\mathrm{M}^{+}, 50 \%\right)$ and 144 (100) (Found: C, 83.9; $\mathrm{H}, 7.3$. Calc. for $\mathrm{C}_{12} \mathrm{H} 12 \mathrm{O}: \mathrm{C}, 83.69 ; \mathrm{H}, 7.20 \%$).

Reaction of prop-2-enylidenetriphenylphosphorane with carbonyl compounds 7a and 33
To a stirred solution of $\mathrm{K} \mathrm{N}\left(\mathrm{SiM}_{3}\right)_{2}(2 \mathrm{ml}$ of a 0.5 m solution in toluene, 1 mmol) was added dropwise a solution of prop-2enyltriphenylphosphonium bromide ($383 \mathrm{mg}, 1 \mathrm{mmol}$) in D M SO (1 ml) at $0^{\circ} \mathrm{C}$, and the solution was stirred for 30 min until the solution turned a red-orange colour. To this solution was added a solution of carbonyl compound 7 a or 33 (0.5 mmol) in DM SO (2 ml), and the mixture was stirred at room temperature for another 30 min until the reagent 7 a or 33 had been consumed. The reaction mixture was extracted with diethyl ether, and the extract was washed with brine and dried over $\mathrm{M} \mathrm{gSO}_{4}$. A fter evaporation of the mixture, the residue was purified by TLC on silica gel [hexane-A cOEt (3:1)] to give no identified products except triphenylphosphine oxide and tarry materials.

Acknowledgements

This work was financially supported by a Waseda U niversity Grant for Special Research Project.

R eferences

1 M.Nitta, Rev. Heteroat. Chem., 1993, 9, 87 and references cited therein.

2 Y. Iino, T. K obayashi and M.N itta, H eterocycles, 1986, 24, 2437.
3 M . N itta and Y. Iino, J. Chem. Soc., Perkin Trans. 1, 190, 435.
4 M. Nitta, Y. Iino, E. H ara and T. K obayashi, J. Chem. Soc., Perkin Trans. 1, 1989, 51; M . Nitta, Y. Iino and K . K amata, H eterocycles, 1989, 29, 1655; M. Nitta, Y. Iino, T. Sugiyama and A. A kaogi, Tetrahedron Lett., 1993, 34, 831; M. N itta, H. K awaji and N. K anomata, Tetrahedron L ett., 1992, 33, 251.

5 N. K anomata, K . K amae, Y. I ino and M . N itta, J. Org. C hem., 1992, 57, 5313.
6 M . N itta, Y. I ino and S. M ori, Tetrahedron Lett., 1991, 32, 6762.
7 M . N itta, Y. Iino, S. M ori and T. Takayasu, J. Chem. Soc., Perkin Trans. 1, 1995, 1001.
8 E. Vedejs, J. P. Bershas and P. L. Fuchs, J. Org. Chem., 1973, 38, 3625; E. J. Corey and B. W. Erickson, J. Org. Chem., 1974, 39, 821.
9 R. N. Gedye, K. C. Westaway, P. A rora, R. Bisson and A. H. K halil, Can. J. Chem., 1977, 55, 1218; K.Toshima, K. Tasuta and M . K inoshita, Tetrahedron Lett., 1986, 27, 4741; W. R. Roush and J. W. Coe, Tetrahedron Lett., 1987, 28, 931; Y. Shishido and C. K ibayashi, J. Org. C hem., 1992, 57, 2876.

10 E. Zbirai and L. Berner-Fenz, Tetrahedron, 1968, 24, 1363; E. Vedejs and J. P. Bershas, Tetrahedron Lett., 1975, 1359; H. J. Bestmann and K . Roth, A ngew. C hem., Int. Ed. Engl., 1981, 20, 575.

11 B. Bogdanovic and S. K onstantinovic, Synthesis, 1972, 481.
12 K. B. Becker, Tetrahedron, 1980, 36, 1717.
13 G. Büchi and H. Wuest, Helv. Chim. Acta, 1971, 54, 1767; F. Bohlmann and C. Zdero, Chem. Ber., 1973, 106, 3779; W. G. D auben and J. I paktschi, J. A m. C hem. Soc., 1973, 95, 5088 W. G. Dauben, D. J. Hart, J. Ipaktschi and A. P. K ozikowski, Tetrahedron Lett., 1973, 4425; A. Padwa and L. Brodsky, J. Org Chem., 1974, 39, 1318; S. M asamune, D. W. Brooks, K. M orio and R . L. Sobczak, J. Am. Chem. Soc., 1976, 98, 8277; M . H atanaka,
Y. Yamamoto and T. Ishimura, J. Chem. Soc., Chem. Commun., 1984, 1705.
14 M. H atanaka, Y. Himeda and I. U eda, J. Chem. Soc., Chem. Commun., 1990, 526; Tetrahdron Lett., 1991, 32, 4521; M. H atanaka, Y. Himeda, R. Imashiro, Y. Tanaka and I. U eda, J. Org. Chem., 1994, 59, 111.

15 S. F. M artin and S. R. D esai, J. Org. Chem., 1977, 42, 1664
16 F. R amirez and S. D ershowitz, J. Org. C hem., 1957, 22, 41
17 E. J. Forbes, M. J. G regory and D. C. Warrell, J. Chem. Soc. C, 1968, 1969.

18 S. Itô, J. Tsunetsugu, T. K anno and H. Sugiyama, Tetrahedron L ett., 1965, 3659; F. Pietra and F. Del Cima, J. Chem. Soc. B, 1971, 2224.
19 T. N ozoe, K. Takase and N. Shimazaki, B ull. C hem. Soc. J pn., 1964, 37, 1644.
20 T. N ozoe, S. Seto and S. M atsumura, Bull. Chem. Soc. J pn., 1962, 35, 1990
21 T. N ozoe, S. Seto and T. Sato, Proc. J pn. A cad., 1954, 30, 473; G. Biggi, F. Del Cima and F. Pietra, J. Am. Chem. Soc., 1973, 95, 7101; F. Pietra, Acc. Chem. R es., 1979, 12, 132.
22 I. K awamoto, T. Hara, Y. K ishida and C. Tamura, Tetrahedron Lett., 1971, 2417; I. K awamoto, T. H ara, Y. K ishida and C. Tamura, Tetrahedron Lett., 1972, 1611.
23 K. H afner, K. H. H afner, C. K onig, M. K reuder, G. Ploss, G. Schulz, E. Sturm and K.H.V öpel, A ngew. Chem., Int. Ed. E ngl., 1963, 2, 123.
24 K. Takase, T. A sao, Y. Takagi and T. N ozoe, J. Chem. Soc., Chem. Commun., 1968, 368.

Paper 6/05581H
R eceived 9th A ugust 1996
A ccepted 15th N ovember 1996

